Small :用于清洁能源的纳米工程碳质材料

原创署名:王伟俊

Small杂志最近出版了“Nanoengineering Carbonaceous Materials for Energy”特刊(2021 年第 14 期第 48 卷),客座编辑为厦门大学马来西亚分校王伟俊教授。该特刊同时也纪念厦门大学建校 100 周年和马来西亚厦门大学建校  5 周年。

在过去一个世纪中,技术的指数级发展速度导致了不可再生化石燃料的快速消耗。按照目前的消耗速度,预计到 2060 年,化石燃料资源将枯竭。联合国政府间气候变化专门委员会(IPCC)近期发布的特别报告也强调了能源紧缺已非常迫切。同时,以目前的二氧化碳排放速度,全球气温可能会上升 1.5°C。联合国认为,在对我们的生态系统造成不可逆转的损害之前,我们必须建立一个全球联盟,以期于 2050 年前实现碳中和。

Small has recently published a special issue collection guest edited by Prof. Wee-Jun Ong from Xiamen University Malaysia, entitled “Nanoengineering Carbonaceous Materials for Energy”. This special issue (2021, Volume 14, Issue 48) is also dedicated to the 100th Anniversary of Xiamen University and 5th Anniversary of Xiamen University Malaysia. In the past century, the exponential rate of technological development has resulted in the rapid consumption of non-renewable fossil fuels. At our current rate of usage, it has been estimated that our fossil fuel resources will be depleted by the year 2060. This has become more pressing with the recently released special report by the United Nations Intergovernmental Panel on Climate Change (IPCC), highlighting that a global rise in temperature of 1.5 °C is likely to occur at the current rate of CO2 emissions. The United Nations also stated that a global coalition must be built to reach carbon neutrality by 2050 before irreversible damage is dealt to our ecosystem.

在节能减排的背景下,太阳能等可再生能源成为了化石燃料的潜在替代。用可再生能源发电时可达到零碳排放或仅产生少量二氧化碳。为应对紧迫的气候灾难,Small组织了本期“用于能源的纳米工程碳质材料”的特刊。该特刊由 17 篇综述、5 篇概念论文、 8 篇原创研究论文组成,涵盖了碳质材料设计、合成和应用的最新进展与挑战(图 1)。碳质材料包括石墨烯、碳纳米管 (CNT)、石墨碳氮化物 (g-C3N4) 和石墨炔(GDY),具有多种形态结构。然而,这些材料在加工和应用性能方面仍存在许多挑战。

In light of that, renewable energy sources, such as solar energy, can provide a prospective alternative to fossil fuels while also producing low or net-zero CO2 when generating electricity. To address this pressing climate disaster, this special issue themed “Nanoengineering Carbonaceous Materials for Energy” consists of 17 reviews, 5 concept papers and 8 original research papers that covers the recent progress and challenges in the design, synthesis, and applications of carbon-based materials for energy applications (Figure 1). Some examples of such materials are graphene, carbon nanotubes (CNT), graphitic carbon nitride (g-C3N4), and graphdiyne, which also come in a variety of morphological configurations. However, there still exist many challenges that lie in both the material processing and application performance.

1. 采用纳米工程碳质材料的能源研究应用领域。

单篇论文简析

Centi 等的评论(10.1002/smll.202007055)着重综述了在寻找替代化石燃料的可持续能源的过程中,人们对利用太阳能合成高价值化学品的兴趣。文章总结了利用纳米碳将 N2 直接还原为氨(即 N2 还原反应)的最新进展。同时也介绍了电解水制氢这一被认为是颇有希望的生产可再生能源的方法。

尽管无金属碳材料具有较高的电催化活性,但其与金属基电催化剂的 HER 性能仍有较大差距。因此,Hui等 (https://doi.org/10.1002/smll.202006136) 利用石墨炔 (GDY)(一种包含 sp2 和 sp 杂化碳原子的 二维单层碳材料)制备出三维碳纤维网络,以此材料为模型,从原子水平上探究了其HER 电催化活性。实验结果表明三维多孔导电基底有利于有效的传质和气体释放,并提供大量用于催化的表面积。

In the search for an alternative and sustainable source of energy to fossil fuels, there has been an interest in the development of solar-to-chemical conversion. This was highlighted in a review by Centi et al. (10.1002/smll.202007055), who have summarized the recent progress in nanocarbons for the direct synthesis of ammonia from N2 (i.e. N2 reduction reaction). In the same vein, electrochemical H2 production from water has been touted as a promising avenue for renewable energy production. Despite the high electrocatalytic activities of metal-free carbon materials, there still exists a big gap in HER performance between carbon and metal-based electrocatalysts. Hui et al. (https://doi.org/10.1002/smll.202006136) thus aimed to bridge this gap by developing graphdiyne (GDY), a 2D carbon monolayer comprising sp2 and sp-hybridized carbon atoms, into a 3D carbon fiber network as a model electrocatalyst to assess the HER activity at an atomic level. The 3D porous conductive substrate was found to be beneficial for efficient mass transport and gas release, as well as providing a large electrocatalytic surface area. 

随着可再生能源技术的兴起,人们对开发大容量储能设备的兴趣也越来越高。具体地,本期特刊收录了两篇有关柔性和可拉伸电池的综述,其中一篇聚焦石墨烯基纳米材料 (10.1002/smll.202005015),另一篇关注各种碳基材料 (10.1002/smll.202005015)。由于可穿戴电子设备的需求不断增长,这些设备需要可伸缩的储能设备,因此该领域受到了广泛关注。

另外,对能源存储设备的需求还促进了“后锂离子电池”技术的创新(包括锂硫、钠离子、锌空气电池等)。Zhang 等合成了分散良好的中空多孔碳纳米纤维 (HPCN) ,并将之作为锂硫电池的硫载体 (10.1002/smll.202004140)。HPCN 能够将硫包裹在其多孔结构中,使其具有出色的循环性能(100 次循环后具有 89% 的容量保持率和 99% 的库伦效率)。其改善的电催化效率、导电性和在充/放电过程中承受硫体积膨胀的能力亦贡献了优异性能。

除以上文章外,这些文章从整体层面介绍了其他电池(Zn-air、Li-CO2)和电化学电容器的前沿进展(10.1002/smll.202006773; 10.1002/smll.202007760; 10.1002/smll.202006821)。

Along with the rise in renewable energy technology, there has also been an increasing interest in the development of high-capacity energy storage devices. In particular, flexible and stretchable batteries have been covered in this special issue by two reviews, one with a focus on graphene-based nanomaterials (10.1002/smll.202005015) and another on a variety of carbon based materials (10.1002/smll.202005015). This niche is of particular interest due to the rising demand for wearable electronic devices, which require stretchable energy storage devices. Tangentially, there has also been a drive towards innovating “beyond Li-ion” battery technology (e.g. Li-S, Na-ion, Zn-air). Zhang et al have synthesized well-dispersed hollow porous carbon nanofibers (HPCNs) as sulfur hosts for Li-S batteries (https://doi.org/10.1002/smll.202004140). The HPCNs were able to encapsulate sulfur within their porous structure, endowing it excellent cycling performance with an 89 % capacity retention after 100 cycles and a 99 % Columbic efficiency. The boosted performance was also attributed to its ameliorated electrocatalytic efficiency, conductivity and ability to endure the volume expansion of sulfur species during the charge/discharge process. As a whole, more advances have been discussed with respect to other batteries (Zn-air, Li-CO2) and electrochemical capacitors (https://doi.org/10.1002/smll.202006773; https://doi.org/10.1002/smll.202007760; https://doi.org/10.1002/smll.202006821).

本期特刊的封面图片(图 2A)展示了多种用于析氧反应 (OER) 的碳质催化剂。 Zoller 等述讨论了碳质材料的催化活性机理及其在 OER 条件下的稳定性 (10.1002/smll.202007484)。同时,内封面(图 2B)来自 Ong 等有关点缺陷工程 g-C3N4太阳能水分解、二氧化碳还原和固氮催化剂的综述(10.1002/ smll.202006851)。 Frackowiak 等以复合纳米材料为重点,阐明了过渡金属硫族化合物与碳纳米管和三维 石墨烯复合电化学电容器电极的催化作用(10.1002/smll.202006821)(内封底,图 2C)。封底(图 2D)涉及Chen 等探索碳材料作为催化剂载体优势的文章(10.1002/smll.202007527)。这些优势决定了合成气转化的催化行为和反应机理。

The cover image for this special issue features the use of different carbonaceous oxygen evolution reaction (OER) catalysts (Figure 2A). This review by Zoller et al discusses the mechanism of the catalytic activity of carbonaceous materials and their stability under OER conditions (https://doi.org/10.1002/smll.202007484). Meanwhile, the inside front cover (Figure 2B) features a review on the utilization of solar energy through point-defect engineered g-C3N4 for water splitting, CO2 and N2 reduction by Ong et al (https://doi.org/10.1002/smll.202006851). With a focus on nanocomposites, Frackowiak et al have elucidated the catalytic effect of transition metal dichalcogenides with carbon nanotubes and 3D graphene as electrochemical capacitor electrodes (https://doi.org/10.1002/smll.202006821) (as featured in the inside back cover shown in Figure 2C). As for the back cover (Figure 2D), Chen et al explores the advantages of carbon materials as catalyst supports that determine the catalytic behaviors and reaction mechanism for syngas conversion (https://doi.org/10.1002/smll.202007527).

图 2.“用于清洁能源的纳米工程碳质材料”的特刊 (A) 封面、(B) 内封面、(C) 内封底、 (D) 封底 。

Figure 2. (A) Front cover, (B) inside front cover, (C) inside back cover and (D) back cover image of Small special issue titled: Nanoengineering Carbonaceous Materials for Energy.

近年来出现了一股推动先进表征技术应用的潮流。这些技术包括非原位、原位和工况表征方法,用以探究发生在纳米碳材料表面的产物生成过程和催化反应机理。需要指出的是,我们迫切需要制定适当的基准测试协议,以便准确比较和评估全球不同研究组报道的催化性能及商业催化剂性能。因此,为了进一步推进纳米材料工程向着高性能能源应用的发展,基准测试协议的挑战必须解决。在克服能源危机这一长期目标的大环境下,本期特刊为相关领域研究界提供了一个及时而重要的视角。

There has been a push towards the implementation of advanced characterization techniques, including ex situ, in situ and operando characterization methods to probe the formation and reaction mechanisms on the surface of nanostructured carbon materials. Additionally, proper benchmarking protocols should be put in place in order to accurately compare and evaluate the performances of these materials between different research groups worldwide as well as with commercial catalysts. Thus, these challenges must be overcome to further advance nanomaterial engineering towards high performance in energy applications. With the long-standing goal of overcoming the energy crisis, this special issue is a timely and significant perspective for the research community immersed in this field.  

最后,客座编辑诚恳感谢 Small 编辑团队成员(尤其是 Lisa Smith 博士)。他们在很大程度上促成了这期特刊。客座编辑还想对所有投稿作者的努力以及对本期特刊的兴趣表示感谢。最后,客座编辑要祝贺厦门大学建校 100 周年、厦门大学马来西亚分校 (XMUM) 成立 5 周年,以及自 2021 年在 XMUM正式创建的纳米能源与催化技术卓越中心 (CONNECT)。

Lastly, the Guest Editor would like to thank the editorial team members of Small (especially Dr. Lisa Smith), who have been a large part of what made this special issue possible. The Guest Editor would also like to express my gratitude towards all the contributing authors for their efforts and appreciate researchers for the interests in this special issue collection. On a final note, the Guest Editor would like to congratulate the 100th anniversary of Xiamen University and the 5th anniversary of Xiamen University Malaysia (XMUM) campus as well as for the official launch of the Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) at XMUM in 2021.

客座编辑简介:

厦门大学马来西亚分校能源与化学工程学院教授Wee-Jun ONG(王伟俊)博士在2016-2018年加入新加坡Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR),担任研究员。2019年在德累斯顿工业大学 (Technische Universität Dresden)做访问学者。主要从事光催化、电催化、光电化学表面科学、催化基础研究、水分解、CO₂还原、固氮及新型催化剂研制和开发。自 2021 年担任厦门大学马来西亚分校 Center of Excellence for NaNo Energy and Catalysis Technology (CONNECT) 卓越中心主任。同时,自2022年担任厦门大学马来西亚分校能源与化学工程学院院长助理。

目前担任 Frontiers in Nanotechnology 主编、Frontiers in Chemistry 副主编、Nano Research’s Young Star EditorMaterials Horizons 顾问委员会成员、 SmartMatChemNanoMat等青年编委。也担任 Coordination Chemistry ReviewsSmallNanoscaleACS Applied Materials & InterfacesChemSusChemSolar RRL 等客座编辑。论文被引超过13,000次,h-index为49。2017年荣获“青年化学工程师研究奖”(IChemE新加坡); 2018年荣获“青年化学工程师研究奖”(IChemE马来西亚);  2018年获Journal of Materials Chemistry A的Emerging Investigator; 2018年获德国联邦教育与研究部(BMBF)颁发的 Green Talent Award; 2018年获马来西亚国家石油公司(Petronas), 埃克森美孚公司(ExxonMobil)和壳牌公司(Shell)赞助的默迪卡奖 (Merdeka Award Grant); 2019年获得马来西亚科学院(ASM)提名参加第69届林道诺贝尔奖得主会议; 2019、2020和2021年连续3年荣获Clarivate Analytics“高被引科学家”称号等。

王伟俊教授研究团队目前正在招募博士学生和博后研究员,致力于低维纳米材料和纳米技术向清洁能源应用(如:光催化、电催化、光电催化)的发展。有兴趣者,请将简历、求职信和研究报告,通过电子邮件发到王教授的邮箱 (weejun.ong@xmu.edu.my)。

王教授官网链接:https://sites.google.com/site/wjongresearch/