Advanced Materials:基于离子聚合物纳米片的碳片/纳米合金异质结可控制备

异质结构可以通过调节不同组分的电子性质,在界面处形成独特的界面电荷态从而促进其催化活性,在能量转换领域显示出巨大的潜力。然而,对于高活性异质结构的可控制备(如成分调整、形貌控制以及活性位点分布等)依旧存在挑战。

电解水产氢(HER)是一种“最理想的工业制氢方法”,其催化剂多以铂(Pt)基材料为主,然而,Pt材料的稀缺性和高价格极大地限制了它的实际应用。许多非铂基催化剂,如镍基催化剂、钼基催化剂、钴基催化剂、杂原子掺杂碳催化剂等,虽已被大量研究,但与铂基催化剂相比,性能差距依然明显。因此,开发性能优越的非铂基催化剂越显重要。目前,科学家已发现在钌颗粒晶格中掺入适量的异质金属(如钴、镍等)形成合金,可以有效改变钌基催化剂的电化学特性,从而显著提高其催化活性和稳定性。然而,由于多金属成核和还原过程的难以控制,制备具有尺寸可控、性质稳定的钌纳米合金材料仍具有很大的挑战。

最近,上海交通大学庄小东教授课题组与苏跃增教授团队合作,利用离子聚合物纳米片,以含阳离子聚酰亚胺为前驱体,通过简便的离子交换法,将双金属(MoO42−/Ru[CN]64−)源成功地引入前驱体中,经高温热解形成嵌有RuMo合金纳米颗粒(2-5 nm)的二维多孔氮掺杂碳纳米片(2DPC-RuMo)。所制备的2DPC-RuMo呈现规整的六边形形貌(2.5 μm)、均匀的RuMo合金颗粒分散和高的比表面积(356 m2 g−1)。作为HER催化剂,在碱性介质中,2DPC-RuMo表现出优异的电催化性能,电流密度在10 mA cm-2时的过电位仅为18 mV,Tafel斜率为25 mV dec-1,转化频率(TOF)值高达3.57 H2 s-1,其性质优于文献报道的其它钌基碳催化剂。进一步DFT计算表明,钌钼合金和氮掺杂碳的新型异质结构可以有效促进水的分解,降低催化剂对氢的吸附能,利于氢在催化剂表面吸脱附,从而提高HER性能。这项工作为可控制备金属(合金)基异质结构提供了一种有效可行的方法,同时为电催化析氢反应提供了一种优异的催化剂。相关论文在线发表在Advanced Materials (DOI: 10.1002/adma.202005433)上。