Small:光电化学水分解应用中一维TiO2基光电极的界面间电荷传输

自1972年Fujishima和Honda首次利用TiO2光电极分解水制氢以来,TiO2光电极在光电催化(PEC)水分解领域引起了大量科研工作者的研究兴趣。TiO2具有稳定的物理化学性能且其能带横跨水的分解电位(1.23 V),所以良好的抗光腐蚀性能使TiO2在光照条件下稳定工作。一维TiO2相较于其他结构更有利于入射光的利用和光生电荷的传导,并且有序的一维结构更易制成PEC功能器件,这使TiO2在光解水制氢领域更具有应用前景。而TiO2自身仅对紫外光响应(太阳光中占比约4%),这大大制约了TiO2在PEC器件中的应用。虽然与窄带隙材料耦合形成的异质结可以有效提高一维TiO2光电极对太阳光利用率(可见光),但是目前复合光电极的光氢转化效率(STH)仍难以达到实际应用所需的10%。因此如何提升光电极的STH效率是目前PEC器件中的主要研究方向,也对开发可持续能源有着重要意义。

近年来的研究工作表明,STH效率的提升难点是如何使光生电荷在转移中能量损失最小化。基于一维TiO2自身的优势,在此基础上构筑的异质结既可拓宽电极的光响应范围,又能利用界面处能带的不连续性达到对光生电荷分离的目的,从而减少光生电荷在界面传输过程中的能量损失。然而,光生电荷在界面处的实际传导机制还不清晰,并且异质结的界面状态会随着耦合材料的结构形貌不同而发生变化,导致光生电荷在界面处传输不可避免地出现能量损失。上海大学李文献/李瑛教授课题组总结了近期一维TiO2基光电极界面载流子传输对光电化学水分解反应的工作。首先,作者对一维TiO2基光电极中界面电荷转移的机理进行了阐述。然后,从具有不同维度纳米结构的材料与一维TiO2形成的异质界面,以及元素掺杂即缺陷工程对异质结界面状态影响的角度切入,概括了一维TiO2基光电极的研究进展和材料设计策略。最后,基于目前的一维TiO2基光电极的研究现状,作者对一维TiO2光电极未来的研究方向进行了展望。相关论文以“Interfacial Charge Transport in 1D TiO2 Based Photoelectrodes for Photoelectrochemical Water Splitting”为题,在线发表在Small上(DOI: 10.1002/smll.201903378)。