效率为20%具有优异宽光谱响应的硅纳微米结构高效太阳电池

AFMshenwenzhong1硅纳米结构以其独特的几何、光学、电学和热学特性,特别是同硅基微电子学相容的特性,最近引起了巨大的研发热潮。由于其理想的陷光和几乎不依赖角度的减反特性,硅纳米结构在太阳电池器件方面更是得到广泛关注和研究。然而,由于硅纳米结构具有较大的比表面积,其表面悬挂键和缺陷态密度很高,当把硅纳米结构应用于光伏器件时,器件电学性能会受到大的表面复合速率影响。这种影响若处理不当,将大大超过硅纳米结构带来的光学增益,使得器件整体性能反而下降。要进一步提升硅纳米结构阵列太阳电池输出性能,需要对硅纳米结构进行形貌优化、表面钝化以及电池器件的综合光电管理等,以提高器件的光电性能,优化器件在各个波段上的光谱响应,最终实现光电转换效率的提升。
AFMshenwenzhong2基于以上,上海交通大学沈文忠研究团队设计并制备了一种大面积(156×156mm2)新型高效太阳电池—硅纳微米复合结构太阳电池,其中在电池的正面引入硅纳微米陷光结构,在电池背面引入背钝化结构,并对正、背面同时实施PECVD-SiO2/SiNx叠层钝化。这种器件结构的优势是同时保证了正面(短波)和背面(长波)的优异光电性能。在短波光谱响应方面,相比于传统微米金字塔太阳电池,硅纳微米结构的短波段减反射性能更优;通过在正面实施SiO2/SiNx叠层钝化,使得正面电学特性得到大大改善,这种正面的光电性能优化保证了电池良好短波光谱响应。在长波光谱响应方面,背面SiO2/SiNx叠层钝化介质膜的引入大大提高了长波内背反射率和降低了背表面复合速率,这种背面光电性能提高保证了电池器件优异的长波段光谱响应。得益于以上两点,硅纳微米结构太阳电池的优异宽光谱响应得以实现。最后,经第三方测试认证(TÜV莱茵),最优的电池结果为:效率20.0%,开路电压0.653V,短路电流达到9.484A(短路电流密度39.0mA/cm2)。这种硅纳微米结构高效太阳电池所采用的制备工艺完全同现有产线工艺兼容,制备步骤相对简单且成本较低,在大规模商业应用方面显示出广阔前景。相关研究结果发表在Advanced Functional Materials(DOI: 10.1002/adfm.201503553)上。

Speak Your Mind