非晶锡基氧化物:高倍率超长寿命钠离子电池负极材料

吉林大学杜菲团队设计了一种非晶的锡基氧化物材料,利用简单球磨的方法,制备出了石墨烯包覆的非晶Sn2P2O7, 利用焦磷酸基作为缓冲介质,抑制钠锡合金在电化学过程中的体积膨胀,从而抑制了负极材料的粉化与衰减。

超长循环寿命的钠离子电池负极材料:静电纺丝法制备T-Nb2O5纳米微晶/碳纤维复合材料

南开大学材料科学与工程学院周震课题组利用静电纺丝的方法,设计了一种嵌入型的T-Nb2O5纳米微晶/碳纤维复合材料,显著提升了材料的倍率性能,实现了长的循环寿命。

过渡金属硫化物/硒化物在钠离子电池中存在的机遇与挑战

澳大利亚伍伦贡大学的侴术雷课题组从材料的物相、形貌、反应机理、反应动力学等多个角度细致地描述了该类材料所面对的机遇与挑战。文章指出,过渡金属硫化物/硒化物的电化学反应过程大多为多电子反应,容量较高。

电化学阴极剥离制备少层磷烯及其在钠离子电池中的应用探索

中南大学化学化工学院纪效波教授团队首次将电化学方法引入到磷烯的制备中,以N,N-二甲基甲酰胺为电解液,季铵盐为电解质,高效地制备了大面积的、层数可调控的少层磷烯。

醚类电解液协同提升金属铋的综合储钠性能

南开大学李福军研究员课题组利用金属铋与醚类电解液的协同效应,大幅提升了钠离子电池的综合性能,实现了负极材料的重要突破,阐明了电极材料充/放电过程的结构演变是电池比容量、循环寿命和倍率等提升的关键影响因素。

钠离子电池正极材料商业化前景分析

澳大利亚伍伦贡大学侴术雷团队通过对比其环境友好程度、材料成本、制备成本、性能(包括容量、循环、电压平台等)等方面详细总结论述了各种现有的高性能钠离子正极材料的商业化前景。

Small Methods: 钠离子固态电解质研究进展

近日,首尔国立大学的Kisuk Kang教授研究组总结了关于钠离子可传导固态电解质的研究进展。从材料设计和选择角度出发,指出理想的钠离子可传导固态电解质应具有高离子电导、低弹性模量以及高化学稳定性。

“多变且高能”的钒氧化物在储能领域中的应用:从低维纳米结构到三维(3D)微-纳结构和自支撑电极

刘鹏程博士(广州大学机电学院&南航材料学院)和朱孔军教授(南京航空航天大学机械结构力学及控制国家重点实验室)以从低维纳米结构合成到3D微-纳结构及自支撑电极加工的独特角度,系统地综述了钒氧化物在LIBs和NIBs等应用中的研究进展、所面临的问题和未来发展趋势。

钠离子电池负极材料新探索:基于氮掺杂[email protected] 薄膜一体化电极的高性能储钠机制

南开大学焦丽芳课题组通过静电纺丝技术设计并制备了氮掺杂[email protected]薄膜,并将其作为钠离子电池一体化负极材料。该电极材料具有高倍率性能和长循环稳定性等优点。

新型高电压、高比能、高倍率钠离子电池正极材料Na3V2(PO4)2O2F

东北师范大学化学学院吴兴隆副教授和中国科学院化学研究所郭玉国研究员课题组合作设计并可控制备出纳米四棱柱状Na3V2(PO4)2O2F正极材料。其用作钠离子电池正极材料时,不但表现出高的工作电压和能量密度,而且具有优异的倍率、长循环、低温和全电池性能。