三维石墨烯/纳米硫/导电高分子三元复合物:协同作用助力高体积能量密度柔性锂硫电池

复旦大学徐宇曦课题组将纳米硫原位生长在氧化石墨烯(GO)表面,然后引入PEDOT:PSS作为功能化分散剂将GO还原得到具有“三明治”结构的石墨烯/纳米硫/导电高分子均一复合纳米片的分散液,最后通过抽滤自组装的方法制备柔性致密但是依然多孔的薄膜。

聚吡咯涂布纸——透气、柔性及高性能超级电容器电极材料

同济大学蔡克峰教授(通讯作者)等人使用无尘纸作为基底,采用低温界面聚合法制备了具有可透气、柔性及高性能的聚吡咯(PPy)涂布纸电极。

Small Methods: 微型储能器件功能化的最新研究进展

近期,复旦大学彭慧胜课题组总结了电致变色、形状记忆和自修复储能器件的最新研究进展,介绍了这三类功能材料的特点及其工作机理,重点讨论了这些功能材料与储能器件的整合策略以及其性能优化方法。

由柔性石墨烯膜构筑的具有三明治结构的超级电容器

“不含导电添加剂、粘结剂、商业化隔膜以及集流体的超级电容器”,这项由清华大学深圳研究生院的科研人员发表在Advanced Materials Interfaces上的研究成果,读起来像下午茶盒子上面的健康声明。严肃地说,是读起来像工艺极其简单、成本低廉的超级电容器的制备说明书。该器件是由二氧化钛(TiO2)辅助紫外光还原得到,由石墨烯构筑而成并具有三明治结构。

柔性MXene/graphene薄膜用于超高体积容量高速超级电容器

为了有效抑制MXene的团聚,哈尔滨工程大学闫俊教授团队和美国德雷塞尔大学Yury Gogotsi教授团队合作,以带正电荷的还原氧化石墨烯(rGO)和带负电荷的Ti3C2 MXene纳米片为原料,采用静电层-层自组装法制备出具有良好导电性、高密度MXene/rGO柔性复合薄膜,作为超级电容器电极材料,表现出优越的电化学性能。

高能量密度、长寿命的柔性准固态Zn-MnO2电池

中山大学卢锡洪副教授课题组与中南林业大学的吴义强教授课题组合作共同开发并制备了一种高性能的、循环性能优异的柔性准固态Zn-MnO2电池。该电池经过300圈循环充放电后仍保持最初电容的77.7%,且能量密度达到504.9 W h kg−1 (33.95 mW h cm−3),比目前报道的很多柔性储能器件高很多。

基于叠层有机半导体异质结的高性能非易失性晶体管存储器

南京邮电大学信息材料与纳米技术研究院黄维教授和合作者以三层有机半导体异质结同时作为半导体层和电荷存储层,制备了高性能的非易性有机场效应晶体管存储器,并实现了多阶存储特性以及在柔性存储中的应用。

新工艺复合电极-基于碳纳米材料的高体积性能超级电容器

哈尔滨工业大学的钟晶博士利用膜分离原理对中空管内部溶液施加原位压力,发现该复合材料制备方法可以使结构有效可控、微观结构极其规则、该原位压力可以使结构更加紧密。

由P(VDF-TrFE)/BaTiO3 复合物制备的自驱动柔性压电纳米发电机

A scalable nanoimprinting process is used to fabricate a high-performance flexible piezoelectric nanogenerator made of piezoelectrically enhanced polyvinylidene fluoride-trifluoroethylene/barium titanate nanocomposite micropillar array, which can turn on various consumer electronics devices and can be demonstrated as self-powered flexible sensors for detecting air pressure/flow and some human vital signs such as breath and heartbeat pulse. This work is reported by Xiaoliang Chen, Xiangming Li, Jinyou Shao,* Ningli An,* Hongmiao Tian, Chao Wang, Tianyi Han, Li Wang, and Bingheng Lu in the article 10.1002/smll.201604245. To find out more, please visit the Small homepage.

Au/Ag超薄透明电极——提升彩色柔性半透明有机聚合物太阳能电池的新思路

苏州大学李耀文副教授等人设计了一种如图1所示的反型结构半透明太阳能电池,提出了通过发展高性能Au/Ag超薄透明复合顶电极和引入介质反射镜的方法来分别实现提高半透明电池的电学接触以及增强活性层对光的再次吸收,从而实现电池性能的提高。