共轭高分子可用于可见光驱动无钯施蒂勒耦合反应

德国马普高分子研究所张凯课题组通过设计光敏性共轭高分子在可见光照射下实现电子和空穴的有效分离,发现光生电子和空穴能分别活化碳-卤键和碳-锡键,从而实现无钯条件下的施蒂勒耦合反应。

基于CuCo嵌入的氮掺杂介孔碳作为高效氧还原和析氢电催化剂

复旦大学先进材料实验室和化学系郑耿锋教授课题组,通过在Cu(OH)2纳米线上预生长沸石咪唑框架 (ZIF-67),运用约束铜热转换方法制备了一种铜、钴双金属嵌入的氮掺杂介孔碳结构材料([email protected])。在制备过程中,利用铜离子和ZIF-67不同的热分解性质(ZIF-67的热稳定性高于铜),使得生成的铜离子被限制在ZIF-67的介孔结构中以减少铜自聚集的发生。

智能SEI膜:有效抑制锂硫电池“穿梭效应”的新策略

近期,大连理工大学张凤祥教授和武汉理工大学刘金平教授等人利用低电位预生长的SEI膜层作为阻隔层将硫与电解液同时密封于导电碳材料中,使得硫正极充放电时,多硫化物可以溶解但不能穿梭,在不影响硫充分反应的同时有效地抑制了穿梭效应。

导电MOF纳米阵列制备高性能固态超级电容器

中国科学院福建物质结构研究所徐刚课题组与王要兵课题组合作,构建了第一例基于导电MOF纳米阵列的固态超级电容器。利用其纳米结构优势以及结合MOF材料的多孔性和优异的电子导电性,使基于此MOF纳米阵列的固态超级电容器表现出媲美碳材料的优异的面积电容和倍率性能。

新机理引发高容量: 高导电纳米黑色二氧化锡作为高性能锂电负极材料

北京大学与中国科学院硅酸盐研究所,美国宾夕法尼亚大学以及北京工业大学等联合研究,发明了一种基于独创制备技术的黑色二氧化锡纳米材料,该材料作为锂电负极具有1340 mA h/g可逆容量,远优于SnO2的理论容量极限(783 mA h/g)。黑色二氧化锡为高性能锂电负极材料的实际应用提供了可能,并对今后其他高性能锂电负极材料设计与合成提供了一种新的思路,具有非常重要的借鉴和指导意义。

Solar RRL:基于新型封端基团的小分子受体材料的高效率太阳能电池

武汉大学杨楚罗、北京航空航天大学孙艳明和上海交通大学刘烽合作发展了一种新型非富勒烯小分子受体。基于新的小分子受体的有机太阳能电池达到了11.8%的能量转换效率,高出对比分子ITIC约20%。研究表明,对小分子受体材料的封端基团进行改造不仅影响分子本身的电子性质,也会影响分子的结晶性和堆积性质。

Small Methods:锂硫电池的研究方法

近十年来,锂硫电池的研究得到了快速发展, 从电池体系设计到电池反应机理研究,均取得了重要的进展。清华大学化学工程系的张强教授及其研究团队在Small Methods上总结了锂硫电池研究方法。

新工艺复合电极-基于碳纳米材料的高体积性能超级电容器

哈尔滨工业大学的钟晶博士利用膜分离原理对中空管内部溶液施加原位压力,发现该复合材料制备方法可以使结构有效可控、微观结构极其规则、该原位压力可以使结构更加紧密。

“用前泡一泡”——简易制备多级结构高活性电解水电极

中国科学院化学研究所胡劲松研究员与河北师范大学李冀辉教授合作,直接在碱性电解水电解质中浸泡工业NiAl合金,获得具有多级纳米结构的Ni(OH)2/NiAl活性骨架,并进一步利用简单的电沉积方法,通过在该活性基底上复合高活性的NiFe及NiMo合金壳层,制备出高活性的电解水析氧和析氢电极,实现了高效电解水。

高安全性、长寿命全固态钠电池用于高效存储摩擦纳米发电机产生的电能

中国科学院北京纳米能源与系统研究所孙春文研究员和合作者研制了一种安全的、长寿命的全固态钠电池。当使用摩擦纳米发电机产生的脉冲电能给该全固态钠离子电池充电时,系统的能量效率达到62.3%,发现全固态钠电池是一种可以高效地存储摩擦纳米发电机产生的脉冲电能的安全持久的储能装置。